jagomart
digital resources
picture1_Calculus Pdf 169875 | Lecturenotes230


 138x       Filetype PDF       File size 1.74 MB       Source: mcclendonmath.com


File: Calculus Pdf 169875 | Lecturenotes230
calculus ii lecture notes davidm mcclendon departmentofmathematics ferris state university 2016edition c 2016davidm mcclendon 1 contents contents 2 1 reviewofcalculusi 5 1 1 limits 7 1 2 derivatives 11 1 ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
                   Calculus II Lecture Notes
                                      DavidM.McClendon
                                 DepartmentofMathematics
                                      Ferris State University
                             2016edition
                        c
                        
2016DavidM.McClendon
                                 1
                                                      Contents
                    Contents                                                                                      2
                    1 ReviewofCalculusI                                                                           5
                        1.1   Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    7
                        1.2   Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    11
                        1.3   Thedefiniteintegral . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       14
                        1.4   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . .          19
                    2 Basicintegrationtechniques                                                                 24
                        2.1   Integrals to memorize . . . . . . . . . . . . . . . . . . . . . . . . . . . .      25
                        2.2   Rewriting the integrand . . . . . . . . . . . . . . . . . . . . . . . . . .        28
                        2.3   Elementaryu-substitutions . . . . . . . . . . . . . . . . . . . . . . . . .        29
                        2.4   Morecomplicatedu-substitutions . . . . . . . . . . . . . . . . . . . . .           35
                        2.5   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . .          41
                    3 Intermediateintegrationtechniques                                                          44
                        3.1   Integration by parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     44
                        3.2   Partial fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    48
                        3.3   Summaryofintegrationtechniques . . . . . . . . . . . . . . . . . . . .             56
                        3.4   Mathematica commandsforintegration . . . . . . . . . . . . . . . . . .             56
                        3.5   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . .          57
                    4 Improperintegrals                                                                          61
                        4.1   Boundednessvs. unboundedness . . . . . . . . . . . . . . . . . . . . .             61
                        4.2   Horizontally unboundedregions . . . . . . . . . . . . . . . . . . . . .            63
                        4.3   Vertically unbounded regions . . . . . . . . . . . . . . . . . . . . . . .         66
                        4.4   Theoretical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . .       71
                        4.5   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . .          77
                                                                   2
                                                                                                         Contents
                    5 Applicationsoftheintegral                                                                  80
                        5.1   Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   80
                        5.2   Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     87
                        5.3   General principles behind all applications of integration . . . . . . . .          96
                        5.4   Arclength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      97
                        5.5   One-dimensionalmomentsandcentersofmass . . . . . . . . . . . . . 100
                        5.6   Two-dimensionalmomentsandcentersofmass. . . . . . . . . . . . . 105
                        5.7   Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
                        5.8   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
                    6 Parametricequations                                                                       130
                        6.1   Introduction to parametric equations . . . . . . . . . . . . . . . . . . . 130
                        6.2   Parametric equations of common graphs . . . . . . . . . . . . . . . . . 134
                        6.3   Calculus with parametric equations . . . . . . . . . . . . . . . . . . . . 143
                        6.4   Transformations on parametric equations . . . . . . . . . . . . . . . . 153
                        6.5   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
                    7 Introductiontoinfiniteseries                                                               162
                        7.1   Motivation and big-picture questions . . . . . . . . . . . . . . . . . . . 162
                        7.2   Convergenceanddivergence . . . . . . . . . . . . . . . . . . . . . . . 166
                        7.3   Σ-notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
                        7.4   Elementaryproperties of convergence and divergence . . . . . . . . . 172
                        7.5   Changingindices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
                        7.6   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
                    8 GeometricseriesandtheRatioTest                                                            180
                        8.1   Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
                        8.2   TheGeometricSeriesTest . . . . . . . . . . . . . . . . . . . . . . . . . 183
                        8.3   Applications of geometric series . . . . . . . . . . . . . . . . . . . . . . 189
                        8.4   TheRatioTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
                        8.5   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
                    9 Convergencetestsforpositiveseries                                                         204
                        9.1   Classifying series according to sign . . . . . . . . . . . . . . . . . . . . 204
                        9.2   TheIntegral Test; harmonic and p-series . . . . . . . . . . . . . . . . . 206
                        9.3   Thenth-termTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
                        9.4   TheComparisonTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
                        9.5   Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
                    10 Absoluteandconditionalconvergence                                                        218
                        10.1 Alternating series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
                        10.2 The triangle inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
                        10.3 Absolute and conditional convergence . . . . . . . . . . . . . . . . . . 224
                                                                                                                  3
                                                                                         Contents
                     10.4 Rearrangementofinfiniteseries . . . . . . . . . . . . . . . . . . . . . . 226
                     10.5 Summaryofclassificationtechniques . . . . . . . . . . . . . . . . . . . 229
                     10.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
                     10.7 Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
                 11 Taylor series                                                             236
                     11.1 Uniqueness of power series . . . . . . . . . . . . . . . . . . . . . . . . 236
                     11.2 Applications of Taylor series . . . . . . . . . . . . . . . . . . . . . . . . 245
                     11.3 General theory of power series  . . . . . . . . . . . . . . . . . . . . . . 252
                     11.4 Homeworkexercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
                 Index                                                                        263
                                                                                                 4
The words contained in this file might help you see if this file matches what you are looking for:

...Calculus ii lecture notes davidm mcclendon departmentofmathematics ferris state university edition c contents reviewofcalculusi limits derivatives thedeniteintegral homeworkexercises basicintegrationtechniques integrals to memorize rewriting the integrand elementaryu substitutions morecomplicatedu intermediateintegrationtechniques integration by parts partial fractions summaryofintegrationtechniques mathematica commandsforintegration improperintegrals boundednessvs unboundedness horizontally unboundedregions vertically unbounded regions theoretical approaches applicationsoftheintegral area volume general principles behind all applications of arclength one dimensionalmomentsandcentersofmass two probability parametricequations introduction parametric equations common graphs with transformations on introductiontoinniteseries motivation and big picture questions convergenceanddivergence notation elementaryproperties convergence divergence changingindices geometricseriesandtheratiotest deni...

no reviews yet
Please Login to review.