134x Filetype PDF File size 1.91 MB Source: ocw.ilas.nagoya-u.ac.jp
Course II Lesson 4 Derivatives of Trigonometric Functions 4A • Derivative of Sine Function • Limit of sinx x • Derivatives of Basic Trigonometric Function 1 Derivative of Sine Function Variation of slopes Cosine ? f (x) f (x) = sin x Derivative by definition ʹ f (x +h)− f (x) sin(x+h)−sinx f (x) = lim =lim h→0 h h→0 h =limsinxcosh+cosxsinh−sinx h→0 h ⎛cosxsinh −sin x1−cosh⎞ =lim⎜ ⎟ h→0 ⎝ h h ⎠ 2 sin x/ x Limit of Consider a sector with central angle x Compare the areas of △OAB, sector OAB, and △OAT 1 2 x 1 2⋅1⋅sinx<(π ⋅1 )⋅ 2π < 2⋅1⋅tanx ∴ sinx0) ∴ 1< x < 1 sinx cosx y = x sinx y =sin x ∴ 1> x >cosx As x→0 1 limsinx =1 h→0 x 3 Derivative of Sine FunctionーCont. ʹ ⎛ sin h 1−cosh⎞ f (x) = lim cosx −sin x h→0⎜ h h ⎟ ⎝ ⎠ 1 (1−cosh)(1+cosh) 1−cos2h sinh sinh h(1+cosh) = h(1+cosh) = h (1+cosh) 1 0 Therefore ʹ ( ) sinx =cosx That makes sense! 4
no reviews yet
Please Login to review.