170x Filetype PDF File size 0.12 MB Source: math.berkeley.edu
Limits, Derivatives, Integrals PeyamRyanTabrizian Monday,August8th, 2011 1 Limits Evaluate the following limits. You may use l’Hopital’s rule! (a) lim 1 x→∞ 2x+3 (b) limx→6 x−6 |x−6| 4 2 (c) limx→∞ x −x 3 2x −1 1 (d) lim + cos(x)x x→0 (e) limx→∞e−xln(x) 2 1 (f) limx→0x sin x (g) limx→∞√x2 +1−x (h) lim √x+3−2 x→1 x−1 x 1 2 (i) limx→0 e −1−x−2x x3 √ 2 (j) lim x +1 x→−∞ x 1 2 Derivatives Find the derivatives of the following functions x (a) f(x) = eee (b) f(x) = sin(x)+x ln(x) (c) f(x) = xtan(x) (d) f(x) = tan(sin(cos(2x))) (e) y′, where xy + xy2 + x2y = 1 (f) y′ at (1,2), where x2 + 2xy − y2 + x = 2 (g) f′(x) = ln(x)ln(x) (h) f′′′(x), where f(x) = xex 3 Integrals Evaluate the following integrals. (a) R3 √9−x2dx R−3 (b) 2 |x − 1|dx 0 R 4 2 (c) x +x dx x R x√ x (d) e 1+e dx R√ (e) π xsin(x2)dx 0 (f) Rπ xcos(x)dx 2 −π 1+x (g) The average value of f(x) = sin(x)cos(x)4 on [0,π] (h) Re2 dx e xln(x) (i) The derivative of g(x) = Rcos(x) ln(1 + x)dx x e R −1 R (j) tan (x)dx + √ 1 dx 2 2 1+x 1−x 2
no reviews yet
Please Login to review.