jagomart
digital resources
picture1_Integration And Summation


 124x       Filetype PDF       File size 0.23 MB       Source: www.mit.edu


File: Integration And Summation
integration and summation edward jin contents 1 preface 3 2 riemann sums 4 2 1 theory 4 2 2 exercises 5 2 3 solutions 6 3 weierstrass substitutions 7 3 ...

icon picture PDF Filetype PDF | Posted on 30 Jan 2023 | 2 years ago
Partial capture of text on file.
              Integration and Summation
                    Edward Jin
            Contents
            1 Preface                                                                                              3
            2 Riemann Sums                                                                                         4
                2.1   Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     4
                2.2   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5
                2.3   Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6
            3 Weierstrass Substitutions                                                                            7
                3.1   Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     7
                3.2   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    8
                3.3   Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9
            4 Clever Substitutions                                                                                10
                4.1   Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    10
                4.2   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   11
                      4.2.1    Solutions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
            5 Integral and Summation Substitutions                                                                13
                5.1   Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    13
                5.2   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   15
                5.3   Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   16
            6 Substitutions About the Domain                                                                      17
                6.1   Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    17
                6.2   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19
                6.3   Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   20
            7 Gaussian Integral; Gamma/Beta Functions                                                             21
                7.1   Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        21
                                                                1
            CONTENTS                                                                                              2
                7.2   Beta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    21
                7.3   Gaussian Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    22
                7.4   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
                7.5   Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
            8 Differentiation Under the Integral Sign                                                             27
                8.1   Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   27
                8.2   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
                8.3   Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
            9 Frullani’s Theorem                                                                                 30
                9.1   Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
                9.2   Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
            10 Further Exercises                                                                                 32
     Chapter 1
     Preface
     This text is designed to introduce various techniques in Integration and Summation, which are
     commonly seen in Integration Bees and other such contests. The text is designed to be accessible
     to those who have completed a standard single-variable calculus course. Examples, Exercises, and
     Solutions are presented in each section in order to help the reader become become acquainted with
     the techniques presented.
     It is assumed that the reader is familiar with single-variable calculus methods of integration, including
     u-substitution, integration by parts, trigonometric substitution, and partial fractions. It is also
     assumed that the reader is familiar with trigonometric and logarithmic identities. Paul Lamar’s
     Online Math Notes, accessible here: http://tutorial.math.lamar.edu/ is a very comprehensive
     review of this content.
     Note: In this text, log denotes the natural (base-e) logarithm.
             This is version 1.0 of the text, updated on December 15, 2020.
                          3
The words contained in this file might help you see if this file matches what you are looking for:

...Integration and summation edward jin contents preface riemann sums theory exercises solutions weierstrass substitutions clever integral about the domain gaussian gamma beta functions function dierentiation under sign frullani s theorem further chapter this text is designed to introduce various techniques in which are commonly seen bees other such contests be accessible those who have completed a standard single variable calculus course examples presented each section order help reader become acquainted with it assumed that familiar methods of including u substitution by parts trigonometric partial fractions also logarithmic identities paul lamar online math notes here http tutorial edu very comprehensive review content note log denotes natural base e logarithm version updated on december...

no reviews yet
Please Login to review.